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a b s t r a c t

We study modeling and identification of stationary processes with a spectral density matrix of low
rank. Equivalently, we consider processes having an innovation of reduced dimension for which
Prediction Error Methods (PEM) algorithms are not directly applicable. We show that these processes
admit a special feedback structure with a deterministic feedback channel which can be used to split
the identification in two steps, one of which can be based on standard algorithms while the other
is based on a deterministic least squares fit. Identifiability of the feedback system is analyzed and a
unique identifiable structure is characterized. Simulations show that the proposed procedure works
well in some simple examples.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Quite often in the identification of large-scale time series one
as to deal with low rank signals which have a rank deficient

spectral density. Such low rank time series may arise in diverse
areas such as control systems, economics, networked systems,
biology and other fields.

Suppose we want to identify an (m + p)-dimensional vector
ime series y by modeling it as a weakly stationary zero-mean
purely non deterministic (p.n.d.) process y ≡ {y(t) ; t ∈ Z},
having a rank deficient rational spectral density Φ(z) of rank m.
his spectral density can always be written in factorized form

(eiθ ) = W (eiθ )W (e−iθ )⊤, (1)

with W an (m + p) × m full rank stable rational spectral factor.
It is well-known that there are in general many such factors
only one of which has the property of being minimum phase,
see Appendix B for a definition. This factor is essentially unique,
that is unique modulo right multiplication by an arbitrary (m×m)
constant orthogonal matrix.

The rank deficiency of the spectrum Φ and consequently of
the process y appears in models used in a variety of applications
and is discussed in the literature from different points of view.

✩ An abridged version of this paper, Picci et al., (2021), was presented at the
IFAC SYSID 2021 meeting in Padova. The material in this paper was partially
presented at the 19th IFAC Symposium on System Identification, July 13–16
2021, Padova, Italy. This paper was recommended for publication in revised
form by Associate Editor Adrian Wills under the direction of Editor Alessandro
Chiuso.

∗ Corresponding author.
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G. Picci), alq@math.kth.se (A. Lindquist).
https://doi.org/10.1016/j.automatica.2023.110938
0005-1098/© 2023 Elsevier Ltd. All rights reserved.
Singular autoregressive (AR) or autoregressive moving average
(ARMA) models are discussed in Basu, Li, and Mochailidis (2019),
Crescente, Falconi, Rozzi, Ferrante, and Zorzi (2020) and Deistler
(2019). These models make contact with dynamic factor analysis
representations; see Bottegal and Picci (2015) and Deistler, An-
derson, Filler, and Chen (2010) where an essential role is played
by a rank-deficient component driven by the common factors.
They occur in biological networks reconstruction as discussed
in Hidalgo, Blumm, Barabási, and Christakis (2009) and Yuan,
Stan, Warnick, and Goncalves (2011). Low rank processes are also
encountered in graphical models which are common in social
networks, see Alpago, Zorzi, and Ferrante (2018, 2021), Ciccone,
Ferrante, and Zorzi (2020) and Zorzi and Sepulchre (2016). Spe-
cific engineering examples where identification of rank-deficient
processes is involved are discussed in Lichota, Szulczyk, Tischler,
and Berger (2019) and Remple and Tischler (2006).

The identification of singular processes has recently been
addressed in Basu et al. (2019), Bazanella, Gevers, Hendrickx,
and Parraga (2017), Chiuso and Pillonetto (2012), Picci, Cao,
and Lindquist (2021), Van den Hof, Weerts, and Dankers (2017),
and Weerts, Van den Hof, and Dankers (2018a, 2018b). Some
of these papers, like (Van den Hof et al., 2017; Weerts et al.,
2018b), propose an ingenious adaptation of the Prediction Error
Method (PEM) identification and are of special interest. We shall
briefly comment on their approach later in this paper. For a recent
survey of the literature see Lippi, Deistler, and Anderson (2022).

Let the process y be partitioned as

y(t) :=

[
y1(t)
y2(t)

]
, (2)

where y1(t), y2(t) are jointly stationary of dimension m and p. By

properly rearranging the components of y, we can assume that
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1 is a process of full rank m. The spectral density can then be
artitioned as

(z) =

[
Φ11(z) Φ12(z)
Φ21(z) Φ22(z)

]
, (3)

where Φ11(z) is full rank.
It is well-known that the PEM identification procedure re-

quires that there must be a unique representation of the predictor
in terms of past y. This is not the case unless the minimum phase
spectral factor W (z) is square full rank. In fact, let e(t) be the m-
dimensional normalized innovation of y and let us expand the
innovation representation y(t) = W (z)e(t) as

y(t) = [W (∞) + z−1Ŵ (z)] e(t) = W (∞)e(t) + Ŵ (z)e(t − 1),

where the last term is a causal function of the strict past inno-
vations and is therefore (by the well-known causal equivalence
of a process and its innovation) must be the predictor, although
expressed as a function of e. Now since W (z) is not invertible,
there is no unique expression of e(t) as a function of past y
and therefore there is no unique expression of the predictor as
a function of past y. Although W (z) is full column rank, its left
inverse is not unique, and one could end up with many expres-
sions for the predictor. This difficulty is exacerbated when one
is working with (parametric) estimates of the transfer function.
Therefore a direct application of the PEM principle seems to be
forbidden due to the reduced-rank noise. However in Van den
Hof et al. (2017) and Weerts et al. (2018b) the authors essentially
show that the past of the first component y1 acts as a sufficient
statistic for the predictor so that there is a unique expression
of the joint predictor which is a function only of the past of y1.
This remarkable re-presentation unfortunately requires a crucial
minimum phase condition which is not always satisfied.

In this paper we follow a different approach based on ideas
first presented in Cao, Lindquist, and Picci (2020, 2021) and
especially in Picci et al. (2021). In the early paper (Georgiou &
Lindquist, 2019) it was shown that there must exist a, in general
non-causal, deterministic relation between the components of a
singular vector process y. In Cao et al. (2020, 2021) and in Picci
et al. (2021) the existence and structure of such deterministic
relations is elucidated and specified as a component of a special
feedback model for the joint process.

We should advise the readers that in the setting of this paper,
the deterministic relation between the variables y1(t) and y2(t),
is in a sense ‘‘dual’’ of that introduced in Cao et al. (2020) and
also studied in Cao et al. (2021). This relation is described by a
rational transfer function which can be identified quite easily by
a least squares algorithm.

The structure of this paper is as follows. In Section 2 we in-
troduce the feedback model representation of low-rank processes
and prove the existence of a deterministic dynamical relation
which reveals the special structure of these processes. In Section 3
we exploit the special feedback structure for identification of the
deterministic relation and of the transfer functions of the two
stochastic components driven by white noise. In Section 4 we
study the identifiability of the transfer functions of a feedback
representation. The feedback structure is in general not identifi-
able and a characterization of all equivalent forward loop transfer
functions is provided based on classical result of stabilization
theory in robust control. Even under the constraint of stability of
the forward loop, yet there are infinitely many equivalent (stable)
forward transfer functions which realize the same transfer func-
tion of the feedback model. The existence of a canonical (unique)
pair of transfer functions of the feedback loop is discussed in
Section 4.2. This canonical structure is a causal Wiener filter
plus an orthogonal error term. The identification of this canonical
feedback structure is discussed in Section 5. The canonical model
2

has an output-error representation where the additive error is not
necessarily white. Two possible approaches to the identification
of this model are briefly discussed. From Sections 3 to 5 we dis-
cuss the identification of low rank time series. The identification
of processes with an external measurable input is considered in
Section 6, where we also make a brief comparisons with the
work of Van den Hof et al. (2017) and Weerts et al. (2018b).
Several simulation examples are reported in Section 7. Finally, in
Section 8 we come to some conclusions.

Notation: All random processes in this paper are discrete-time
(t ∈ Z), wide sense stationary with zero mean and finite variance.
Most notations comply with those used in the book (Lindquist
& Picci, 2015) and should be quite standard in the system iden-
tification literature. In particular, multiplication by z is the one
step ahead shift operator acting as: zy(t) = y(t + 1) and y(t) =

W (z)u(t) designates the response of a linear system with transfer
function W (z) to an input function u ≡ {u(t); t ∈ Z}. A rational
vector or matrix function is called stable if all of its poles belong
to the interior of the unit disk. The strictly proper stable rational
vector functions written as n-dimensional column vectors form
a distinguished subspace of the vector Hardy space H2

n which,
with some abuse of notation, in this paper will be denoted by
the same symbol. H̄2

n will denote the direct sum of H2
n plus the

constants. This space contains the causal rational functions which
are finite for z → ∞ (but are not necessarily strictly causal). The
notation [·]+ stands for the orthogonal projection operator onto
H̄2

n . It should be remembered that it maps rational functions into
proper stable rational vector functions.

2. Feedback models of stationary processes

In this section, inspired by classical references such as Caines
(1988), Caines and Chan (1975), Gevers and Anderson (1981)
and Lindquist and Picci (2015, Sect.17.1), we review the definition
and some properties of general feedback models which have been
also used in our recent papers (Cao et al., 2020, 2021; Picci et al.,
2021) in the context of rank-deficient vector processes. Then we
derive a special feedback model for low-rank processes and prove
the existence of a deterministic relation between y1(t) and y2(t).

Definition 1 (Feedback Model). A Feedback model of the process
y(t) :=

[
y1(t)⊤ y2(t)⊤

]⊤ of dimension m + p, is a pair of
equations

y1(t) = F (z)y2(t) + v(t), (4a)

y2(t) = H(z)y1(t) + r(t), t ∈ Z (4b)

atisfying the following conditions:

• v and r are jointly stationary uncorrelated processes called
the input noise and the modeling error;

• F (z) and H(z) are m × p, p × m causal transfer function
matrices, one of which is strictly causal, i.e., has at least one
delay;

• the closed loop system mapping
[
v

r

]
→

[
y1
y2

]
is well-posed

and internally stable ;

The block diagram illustrating a feedback representation is
hown in Fig. 1. Note that the transfer functions F (z) and H(z) are
n general not stable, but the overall feedback configuration needs
o be internally stable (Doyle, Francis, & Tannenbaum, 1992,
hap. 3.2). In the sequel, we shall often suppress the argument
whenever there is no risk of misunderstanding. The following
onstruction shows that feedback representations of p.n.d. jointly
tationary processes always exist. Let H−(y ) be the closed span
t 1
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Fig. 1. Block diagram illustrating a feedback model.

f the past components {y11(τ ), . . . , y1m(τ )} | τ ≤ t} of the vector
rocess y1 in an ambient Hilbert space of second order zero-

mean random variables (Lindquist & Picci, 2015) and let H−

t (y2) be
efined likewise in terms of {y21(τ ), y22(τ ), . . . , y2p(τ ) | τ ≤ t}. A
epresentation similar to (4) may be gotten from the formulas for
ausal Wiener filters expressing both y1(t) and y2(t) as the sum
f the best linear estimate based on the past of the other process
lus an error term

1(t) = E{y1(t) | H−

t−1(y2)} + v(t), (5a)

2(t) = E{y2(t) | H−

t (y1)} + r(t). (5b)

For a processes with a rational spectral density the Wiener pre-
dictors can be expressed in terms of causal rational transfer
functions F (z) and H(z) as in Fig. 1. Here we choose F (z) to be
strictly causal. An alternative representation with H(z) strictly
causal can also be given, to guarantee well-posedness of the
feedback system. Although the errors v and r obtained by the
procedure (5) may be correlated, in Appendix A we will show
that there exist feedback model representations where they are
uncorrelated. The following theorem describes basic properties
of feedback representations of stationary processes. It has been
proven in Cao et al. (2020) and Picci et al. (2021) and is also
reported in the companion paper (Cao et al., 2021), therefore its
proof is omitted.

Theorem 2. The transfer function matrix T (z) from
[
v

r

]
to

[
y1
y2

]
of the feedback model is given by

T (z) =

[
P(z) P(z)F (z)

Q (z)H(z) Q (z)

]
, (6a)

with
P(z) = (I − F (z)H(z))−1,

Q (z) = (I − H(z)F (z))−1 (6b)

where the inverses exist. Moreover, T (z) is a full rank (invertible a.e.)
and (strictly) stable function which yields

Φ(z) = T (z)
[
Φv(z) 0
0 Φr (z)

]
T (z)∗, (7)

where Φv(z) and Φr (z) are the spectral densities of v and r, respec-
tively, and ∗ denotes transpose conjugate.

Since T (eiθ ) has full rank a.e., Φ is rank deficient if and only if
at least one of Φv or Φr is. Thus the rank of Φ is equal to the sum
of the ranks of Φv and Φr . The next lemma will play a crucial role
in this paper. Although it can be seen as a dual of a continuous-
time result in Cao et al. (2020), for the benefit of the reader we
shall provide a proof anyway.

Lemma 3. Suppose (FΦrF∗
+ Φv) is positive definite a.e. on the

unit circle. Then

H = Φ Φ−1
− Φ F∗(Φ + FΦ F∗)−1(I − FH), (8)
21 11 r v r

3

that is

H = Φ21Φ
−1
11 (9)

if and only if Φr ≡ 0.

Proof. From (6) and (7), we have

Φ21 = Q (HΦv + ΦrF∗)P∗
= QHΦvP∗

+ QΦrF∗P∗,

Φ11 = P(Φv + FΦrF∗)P∗,

and using the easily verified relations

PF = FQ , HP = QH.

we get Φ21 = HPΦvP∗
+ QΦrF∗P∗. Adding and subtracting the

erm HPFΦrF∗P∗ we end up with

21 = HΦ11 + (Q − QHF )ΦrF∗P∗

= HΦ11 + ΦrF∗P∗

ince Q −QHF = I . Then (9) follows if and only if Φr = 0 since P
s invertible and F times a spectral density can be identically zero
nly if the spectral density is zero as otherwise this would imply
hat the output process of a filter with stochastic input would
ave to be orthogonal to the input. □

In the following we specialize to feedback models of rank
eficient processes. We shall show that there are feedback model
epresentations where the feedback channel is described by a
eterministic relation between y1 and y2.

heorem 4. Let y be an (m+p)-dimensional process of rank m. Any
ull rank m-dimensional subvector process y1 of y can be represented
y a feedback scheme of the form

1 = F (z)y2 + v, (10a)

2 = H(z)y1. (10b)

here the transfer functions F (z) and H(z) satisfy the conditions of
efinition 1 and the input noise v is of full rank m.

roof. Recall that n-tuples of real rational functions form a vector
pace Rn(z) where the rank of a rational matrix is the rank almost
verywhere. The claim is equivalent to the two statements:
1. If we have the structure (10), i.e. Φr ≡ 0; then y1 is of full

ank m = rank(Φ).
2. Conversely if y1 is of full rank m = rank(Φ) then Φr ≡ 0.
Part 1 follows from Lemma 3 since because of (7) then Φv

ust have rank m(= rank(Φ)).
Part 2 is not so immediate. One way to show it could be as

ollows.
Since Φ(z) has rank m a.e. there must be a full rank p×(m+p)

ational matrix which we write in partitioned form, such that

A(z) B(z)]Φ(z) = 0 ⇔ [A(z) B(z)]
[
Φ11(z)
Φ21(z)

]
= 0 (11)

here A, B are p × m and p × p matrices, which is equivalent to
(z)y1(t) + B(z)y2(t) ≡ 0.
We claim that B(z) must be of full rank p. One can prove

his using the invertibility of Φ11(z). For, suppose B(z) is singular,
hen pick a p-dimensional non-zero row vector a(z) in the left
ull space of B(z) and multiply from the left the second relation
y a(z). This would imply that also a(z)A(z)Φ11(z) = 0 which
n turn implies a(z)A(z) = 0 since Φ11 is full rank. However
(z)[A(z) B(z)] cannot be zero, for the matrix [A(z) B(z)] is full
ank p and hence a(z) must be zero. So B(z) must be full rank.

Now take any nonsingular p × p rational matrix M(z) and
onsider instead M(z)[A(z) B(z)], which provides an equivalent
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elation to (11). By choosing M(z) = B(z)−1 we can reduce B(z)
o the identity to get

−H(z) I ]
[
y1(t)
y2(t)

]
= 0

here H(z) is a rational matrix function, so that one gets the
eterministic dynamical relation

2(t) = H(z)y1(t).

ubstituting in the general feedback model one concludes that
2(t) must then be a functional of only the noise v since y1(t) is
uch. Therefore by the uncorrelation of v and r one must conclude
hat in the second equation of (4) r must be the zero process
.e. Φr = 0. Hence a representation like (10) must hold. □

. Identification of low rank processes

Suppose we want to identify by a PEM method a model of an
m + p)-dimensional time series y of rank m. To this purpose,
he model class should be selected to guarantee identifiability
i.e. uniqueness) and it is specific of the PEM method that it
hould actually be an innovation representation of y which is well
nown to be essentially unique. This representation involves a
inimum phase spectral factor W (z) satisfying (1) whereby

(t) = W (z)e(t), (12)

here e(t) is the m-dimensional normalized innovation process
f y, a white noise of covariance Im.
Consider then the model (12) block-partitioned as in (2),

(t) =

[
y1(t)
y2(t)

]
:=

[
W1(z)
W2(z)

]
e(t), (13)

here y1 and y2 are described by the special feedback model (10).
rom the defining property of y1 and y2 in our partition, W1(z)

must be square m×m, stable, causal and non singular (invertible
a.e.) and W2(z) stable and causal.

Proposition 5. The transfer function of the feedback channel in
model (10) is given by the expression

H(z) = W2(z)W1(z)−1 (14)

and is unique. In fact, it depends only on the joint spectrum (3).
Stability of H holds if and only if W1 is minimum phase.

Proof. The formula follows from the partition (13) since both
components are driven by the same full rank process e(t). For-
mula (9) in Lemma 3, provides the alternative expression H(z) =

Φ21(z)Φ11(z)−1 which must obviously coincide with (14) since
Φ2,1(z) = W2(z)W1(z)∗ and Φ1(z) = W1(z)W1(z)∗. It is then
clear that H(z) depends only on the joint spectrum (3) and must
therefore be unique for a given partition of the vector process y.
That stability of H holds if and only if W1 is minimum phase fol-
lows since there cannot be cancellations in forming the quotient
(14). It is shown in Appendix B that if W (z) is minimum phase
then W2(z) and W1(z) cannot have common unstable zeros which
could cancel in forming the product (14). □

Remark. Proposition 5 is in agreement with Cao et al. (2021),
where it was shown that H(z), (called F in Lippi et al. (2022)) is
unique but in general not stable by a counterexample provided
in Section V-A of Cao et al. (2021). (Also see the conference
version Cao et al., 2020). Incidentally this answered a question
by Manfred Deistler in the negative. On the contrary we shall see
that there are in general infinitely many transfer functions F (z)
generating y by means of the model (10).
4

3.1. Estimation of H(z)

Since the relation between y2 and y1 is completely determin-
istic we can identify H(z) by imposing a deterministic transfer
function model to the observed data. The model can be written
as A(z−1)y2(t) − B(z−1)y1(t) = 0, t = 1, . . . ,N (the minus sign is
for convenience) where A(z−1) and B(z−1) are matrix polynomials
in the delay variable z−1, of dimension p× p and p×m such that

H(z) = A(z−1)−1B(z−1).

One can always choose A(z−1) monic and parametrize the matrix
polynomial B(z−1) so that the transfer function corresponds to the
difference equation

y2(t) = −

q∑
k=1

Aky2(t − k) +

r∑
k=0

Bky1(t − k), t = 1, . . . ,N, (15)

where we have written A(z−1) = I +
∑q

k=1 Akz−k and B(z−1) =∑r
k=0 Bkz−k. The above equation involves delayed components of

the observed trajectory data of y. The coefficients can then be es-
timated by solving a deterministic overdetermined linear system
by least squares and a strongly consistent and unbiased result can
be obtained whether the system is stable or not, assuming we
know the true degrees of A and B. See the example in Section 7.2.

Then, once W1 is identified, the transfer function W2 can be
calculated using the relation

W2(z) = H(z)W1(z). (16)

This procedure however may fail if the true W1(z) in (12) is not
minimum phase and the identification is done by a time-recursive
least squares algorithm. In fact if W1(z) has unstable zeros then
H(z) is unstable and in this case the noise superimposed to
the data may tend to excite the unstable modes of the system
(31) and cause divergence. To bypass the constraint of minimum
phase of the true system one should rely on algorithms processing
the whole data batch in one shot.

3.2. Identification of W1

Next, since y1 (and W1) is full rank, it seems that one could
easily identify, say an ARMA innovation model for y1 based only
on observations of y1(t) on some large enough time interval. By
this procedure we would ideally identify an innovation represen-
tation for y1, say y1(t) = G1(z)e1(t) where however the minimum
phase transfer function G1(z) does not necessarily coincide with
the upper block of the joint innovation representation of y. This
would be true only if the upper block W1(z) of the minimum
phase W (z) was also minimum phase, which in general may not
be true (the same clearly holding also for the lower block). See
Appendix B for a discussion of this point. In other words, the par-
titioned innovation representation of the full process y may not
necessarily coincide with the separate innovation representations
of the two components y1 and y2.

Therefore a PEM method applied to measurements of y1 may
not lead to a consistent estimate of the upper block W1(z) of the
model (13) since there may be a nontrivial inner function Q1(z)
such that

W1(z) = G1(z)Q1(z) (17)

One may then wonder if the identification problem we are after
is well-posed and if there actually is a procedure to recover a
non-minimum phase W1(z) from the data. To this end we shall
first show that estimating G1 can nevertheless lead to a consistent
estimate of the joint spectrum.
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roposition 6. Assume that the transfer function H(z) is estimated
s described in the previous subsection, that is using the data (y1, y2)

and asymptotically satisfying the relation (16). Then, even if the
upper block W1(z) of the joint (minimum phase) transfer function
W (z) is not minimum phase, a consistent estimate of the minimum
phase transfer function G1(z) does nevertheless produce a consistent
estimate of the joint spectral density of the (joint) process y.

Proof. The statement is obviously true for the auto spectral
density Φ11(z). Then just recall that the cross spectral density of
y2 and y1 can be expressed as

Φ21(z) = H(z)Φ11(z) = H(z)G1(z)G1(z)∗.

Using the estimate Ĝ1(z) in place of W1(z) in formula (16) to
compute the estimate Ŵ2(z), although Ŵ2(z) := Ĥ(z)Ĝ1(z) may be
a non-consistent estimate of W2(z), it does result in a consistent
estimate of the cross spectrum Φ21(z). A similar argument can be
used for Φ22. □

Hence a consistent estimate of the minimum phase transfer
function G1(z) does produce a consistent estimate of the joint
(minimum phase) transfer function W (z) of the (joint) process y
and therefore also of its m × m upper block.

3.3. Procedure to recover W1 and W2 from consistent estimates of
G1 and H. (equivalently, recovering the missing inner factor Q1 in
the outer–inner factorization (17)).

From the expression H(z) = W2(z)Q ∗

1 (z)G1(z)−1, that is from

H(z)G1(z) = W2(z)Q ∗

1 (z) = W2(z)Q1(z)−1 . (18)

One can get estimates of W2 and Q1 by performing a right-
coprime factorization in the rational H∞ space (see e.g. Zhou,
Doyle, & Glover, 1995, sect. 5.4), of the estimated product Ĥ(z)
Ĝ1(z) imposing that Q1 should be inner (see e.g. Oară & Varga,
1999). This guarantees uniqueness, see again Zhou et al. (1995,
p. 368). The conjugate inner function Q ∗

1 must contain exactly all
the unstable poles of the left member.

In this way we are in principle able to obtain a consistent
estimate of the full minimum phase model W even when W1
is not minimum phase. The calculations are easy when W1 is
scalar but may be quite involved in the matrix case where one
should need to use coprime factorization algorithms in terms of
state–space realizations which we shall not dwell into.

4. Identification of the feedback model

The procedure described so far does not take into account
the possibility of modeling the system by the structure (10), in
particular by the ‘‘internal’’ feedback description of y1 involving
the transfer functions F , K and H . Assume that the model (13) is
in innovation form, with e(t) the innovation of the joint process
y(t) and let

y1 = F (z)y2 + K (z)e, (19a)

y2 = H(z)y1. (19b)

be the corresponding feedback representation with K (z) a square
spectral factor such that v(t) := K (z)e(t), which we assume
minimum phase for identifiability. From (6) we have[
W1
W2

]
= T

[
K
0

]
=

[
PK
QHK

]
=

[
PK
HPK

]
, (20)

with both P(z)K (z) and H(z)P(z)K (z) submatrices of a minimum
phase transfer function.
5

One may ask how one could recover the direct transfer func-
tion F (z) from the identified W1(z) and H(z). This would amount
to solving for F the relation W1 = (I − FH)−1K which, assuming
H is given, contains two unknowns. Hence F (z) and K (z) are not
identifiable as they do not correspond uniquely to the minimum
phase representation (13) and hence do not correspond uniquely
to the joint spectral density of y(t). In other words, there are
in general infinitely many pairs (F (z), K (z)) realizing in feedback
form the innovation representation (13). This actually agrees with
the well-known identifiability analysis of feedback systems which
dates back to Gustavsson, Ljung, and Söderström (1977), see the
example in Section 6.

4.1. On equivalent feedback structures

In our setting the causal transfer function H(z) of the feedback
channel is uniquely determined by the two components of the
process y, once the partition is fixed and known, while there are
in general a multitude of pairs (F , K ) yielding the same transfer
function W1(z). Note that each such pair should make W1 stable.
In particular, once H is given, each F should make the feedback
configuration (10) internally stable. In this subsection we shall
characterize the set of such equivalent F ’s. This problem can be
regarded as the ‘‘dual’’ of a stabilization problem in control, which
is also discussed in our companion paper (Cao et al., 2021) on
modeling of low rank vector processes. Here we have a more
limited scope than in Cao et al. (2021) as we only want to analyze
the identifiability of the system by explicitly describing all pairs
of transfer functions (F , K ) which realize the same stable W1.

Since the feedback system must be internally stable the sen-
sitivity function P(z) defined in (6b) needs to be analytic in the
complement of the open unit disk, without unstable pole-zero
cancellation between F (z) and H(z). Assuming for the moment
that H(z) is a proper stable rational function, there is a whole
class of proper rational functions F (z) which accomplish this job.
In the scalar case they are all described by the formula (Doyle
et al., 1992, Chapter 5.1),

F (z) =
S(z)

1 + S(z)H(z)
(21)

here S(z) is an arbitrary proper stable rational function. The
orresponding sensitivity function is given by

(z) = 1 + S(z)H(z)

linearly parameterized by an arbitrary such S(z). All correspond-
ing K (z) are then obtained from the relation (19a), that is K (z) =

(z)−1W1(z) so that all such (F , K ) yield the same transfer func-
tion W1(z).

When W1(z) is not minimum phase and H(z) = W2(z)W1(z)−1

fails to be stable, closed-loop stability can still be characterized
by using a coprime stable proper-rational factorization of H(z)
ielding a more general parametrization of all F ’s as described
n Doyle et al. (1992, Sect 5.4) (involving the so-called Youla
arametrization).
In the matrix case, still assuming a stable H , there is a

arametrization formula similar to (21), see e.g. Ref. Zhou et al.
1995). But for the unstable case one needs to use matrix coprime
actorizations to obtain the stabilizing F . This issue is fully dis-
ussed in the dual context of our companion paper (Cao et al.,
021).

.2. A canonical feedback model

As seen from (21), there are infinitely many possible transfer
unctions F (z) (and also companion K (z)) realizing the same
losed loop transfer function W . In this subsection we shall ask
1
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he following natural question: If one restricts F to be stable and
ausal, does there exist a unique feedback representation (19)?
ince the identifiability analysis of the previous section involves
lso the transfer function K (z), it is quite evident that the answer
hould be negative. The following example provides in fact a few
ifferent pairs (F , K ), all with a strictly causal stable F , which
ealize the same transfer function W (z).

xample. Let a 2 × 1 transfer function W (z) be partitioned by
wo scalar blocks of respective transfer functions

1(z) =
z3

(z − 0.5)(z + 0.5)(z − 0.2)
, (22a)

2(z) =
z3

(z − 0.5)(z − 0.2)(z + 0.1)
. (22b)

the corresponding transfer function H being (from (14))

H(z) =
z + 0.5
z + 0.1

.

We can provide three different pairs F , K realizing the system, all
hree with a stable strictly causal F . The first being

1 =
−0.4

z + 0.5
, K1 =

z3

(z − 0.5)(z − 0.2)(z + 0.1)
.

he second,

2 =
0.4

z + 0.5
, K2 =

z3(z − 0.3)
(z + 0.5)(z − 0.5)(z − 0.2)(z + 0.1)

.

nd finally

3 =
(0.2z2 + 0.25z − 0.5)(z + 0.1)

(z + 0.5)z3
, K3 = 1. (23)

To check that all three pairs realize the minimum phase W1 in
the example, just calculate the noise transfer functions Ki from
Ki = (I − FiH)W1, yielding all Ki to be minimum phase, and the
corresponding Pi = (I − FiH)−1

= W1K−1
i being stable.

This last example offers a hint leading to the characterization
of uniqueness: one can choose a particular function F (z) which,
besides being stable with at least one unit delay, acts as the trans-
fer function of the Wiener predictor of y1(t) based on the (strict)
past of y2. Then one should have a representation like (19a) where
v(t) is the prediction error, uncorrelated with (i.e. orthogonal to)
the past space H−

t−1(y2).
The proof of uniqueness of such a representation is just based

on the uniqueness of the orthogonal decomposition of y1(t) as
a linear causal functional of the strict past of y2 plus an error
part orthogonal to the past space H−

t−1(y2). By the orthogonal
projection lemma (Lindquist & Picci, 2015, p.27), given such a
decomposition, the linear causal functional of the strict past of
y2 must then be the (unique) orthogonal projection E[y1(t) |

H−

t−1(y2)] onto H−

t−1(y2), i.e. the Wiener predictor.
In particular, when K (z) is a constant matrix as in the third

example, the noise K3e(t) is automatically orthogonal to the strict
past space of y2 and we automatically get the remarkable inter-
pretation of F (z) as the transfer function of the Wiener predictor.
Indeed, below we shall show that this will surely happen whenW2
is minimum phase.

Theorem 7. Assume that W2 is minimum phase; then there is
a representation (19) where F is stable and strictly causal, that is
F (z) = z−1F̄ (z) with F̄ (z) causal and stable (analytic in {|z| ≥ 1})
and K (z) is a constant matrix K+. In fact, this F̄ (z) coincides with
the transfer function F+(z) of the one-step ahead Wiener predictor
based on the strict past of y2, that is

F (z)y (t − 1) = E{y (t) | H− (y )} (24)
+ 2 1 t−1 2

6

and the prediction error ỹ1(t) := y1(t) − F+(z)y2(t − 1) can be
written K+e(t) where e(t) is the innovation of the joint process y.
The representation

y1(t) = F+(z)y2(t − 1) + K+e(t) (25)

is the unique feedback representation of y1(t) in which v(t) is
uncorrelated with the strict past of y2.

Proof. Let W2(z) = G2(z)Q2(z) with Q2(z) the inner factor of
W2(z); it is a standard fact explained for example in Lindquist and
Picci (2015, Chap. 3) that the Fourier representative of H−

t−1(y2)
is the subspace Q2H2

m of H2
m. Denoting by PQ2H2

m the orthogonal
projection operator onto Q2H2

m, we can write the formal repre-
sentative of the error process ỹ1(t) := y1(t) − E[y1(t) | H−

t−1(y2)]
as

ỹ1 := W1e − [PQ2H2
mW1] e

so that

K (z) := W1(z) − [PQ2H2
mW1](z) (26)

is the transfer function of the error process v(t) := K (z)e(t) which
by construction is uncorrelated with the strict past H−

t−1(y2). In
ther words,

(z) ⊥ Q2H2
m (27)

he orthogonality being understood as holding columnwise in the
2 space of vector functions on the unit circle.
Now if (and only if) Q2(z) = Im then K (z) ⊥ H2

m which means
that K (z) (in fact its column functions) belong to the orthogonal
complement (H2

m)
⊥. But since K (z) is analytic, this can happen

nly when K (z) is a constant matrix. □

Naturally, for a general representation (19a) with a strictly
causal F , the error process v(t), given by v(t) = [W1(z) −

(z)W2(z)]e(t) := K (z)e(t) may not necessarily be orthogonal to
he past of y2.

. Structure and estimation of the predictor

Denoting for convenience the one-step ahead predictor E
y1(t) | H−

t−1(y2)} by the symbol ŷ1(t), we may calculate F+ by
he Wiener predictor formula. see e.g. Lindquist and Picci (2015,
. 105). Introducing the cross spectral density of the processes
1(t) and e2(t − 1) ≡ z−1e2(t), one has

+ = [Φŷ1,z−1e2 ]+G
−L
2 = [zW1Q ∗

2 ]+G−L
2 . (28)

here [·]+ denotes the (causal) orthogonal projection of a func-
ion onto the complete H̄2

m space, G2(z) is the minimum phase
actor of W2(z), G−L

2 its (Moore–Penrose) left inverse and Q2(z) the
nner factor of W2 so that the innovation of y2 is e2(t) = Q2(z)e(t).
ence, if W2 is minimum phase the above simplifies to

+(z) = [zW1(z)]+W−L
2 (z) . (29)

nd one gets ŷ1(t+1) = F+(z)y2(t) = [zW1(z)]+ e(t) and so, when
1 is also minimum phase, e(t) = W1(z)−1y1(t) and

+(z)y2(t) = z[W1(z) − W1(∞)]W1(z)−1y1(t) (30)

s exactly the one-step Wiener predictor of y1(t+1) given its own
ast. This agrees with the sufficient statistic role of the past of
1 in the predictor formulas (12) and (13) of Van den Hof et al.
2017).
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.1. Estimation of F+(z)

A conceptually simple way to estimate F+(z) is to resort to
estimates of the transfer functions H(z) and the minimum phase
factor G1(z). From consistent estimates of these functions one
can perform the coprime factorization (18) to obtain estimates of
W2(z) and of the inner factor Q1(z). To estimate G2(z) and com-
pute the inner factor Q2(z) one can then perform an outer–inner
factorization on the estimate of W2(z), i.e.,

W2(z) = G2(z)Q2(z).

With these data one may in principle compute F+(z) by formula
(28) and the companion noise transfer function K (z) by imple-
menting the formula (26) or by K = (I − z−1F+H)W1. Although
this may look like a rather complicated indirect procedure, for
scalar transfer functions it can be implemented quite easily, see
Example 2 in Section 7.2.

One may instead attempt to estimate the transfer function
F+(z) directly from the data. For simplicity we shall restrict to
the case of scalar processes, the generalization to the vector case
being relatively straightforward. We assume a rational structure,
say

F (z) = D(z−1)−1N(z−1)

where D(z−1) and N(z−1) are polynomials in the delay variable
z−1, of degree n and m. Choosing D(z−1) monic and the numer-
ator polynomial N(z−1) with a zero constant term, the transfer
function corresponds to the difference equation

ŷ1(t) = −

n∑
k=1

Dkŷ1(t − k) +

r∑
k=1

Nky2(t − k) t = 1, . . . ,N, (31)

involving delayed components of the unobserved trajectory of the
predictor ŷ1 and of the ‘‘input’’ time series y2. Assuming we know
the true orders, this could act as a parametric representation
of the predictor transfer function. Of course ŷ1 is not observed
and the identification problem needs to be formulated in an
output-error setting. Introducing the prediction error

v(t) := y1(t) − ŷ1(t)

and letting ϕ(t − 1) :=[
y1(t − 1) ... y1(t − n) y2(t − 1) ... y2(t − r)

]⊤
=

[
y1(t − 1)
y2(t − 1)

]
,

where the boldface symbols y1(t − 1), y2(t − 1) represent arrays
ade of n- and r-dimensional delayed variables y1(t − k) and

y2(t − k) as specified by the model (31), the representation (19a)
can be written as a ‘‘constrained’’ pseudo-linear structure

y1(t) = ϕ(t − 1)⊤θ + ε(t) . (32)

where θ is the (n+r)-dimensional vector of unknown parameters
and ε(t) := D(z−1)v(t) still dependent on the parameter θ . From
what we have seen previously, in general v(t) and hence ε(t) may
be far from being white so attempts to use ARX identification may
lead to badly biased estimates. In addition, for F+(z)y2(t−1) to be
the Wiener predictor, v(t) must be orthogonal to the strict past
of y2 which should be added as a further constraint to the model.

The output-error model (32) could be identified by an
instrumental-variable method see Ljung (2002, p. 192–198). In
the standard procedure the unknown parameters should first be
roughly estimated by minimizing the average squared prediction
error v(t) i.e. minimizing

JN (θ ) :=
1
N

N∑
v(t)2
t=1

7

by least squares pretending v is white, that is imposing orthogo-
nality to the delayed data ϕ(t − 1), i.e.

1
N

N∑
t=1

ϕ(t − 1) v(t) = 0 . (33)

hich leads to the normal equations

1
N

N∑
t=1

ϕ(t − 1)ϕ(t − 1)⊤ θ =
1
N

N∑
t=1

ϕ(t − 1)y1(t).

n the limit for N → ∞ we are led to solve an equation of the
orm

θ = E[ϕ(t)y1(t)] . (34)

here the matrix

=

[
Σy1 Σy1,y2

Σy2,y1 Σy2

]
is formed by obvious limit covariance matrices of the observed
data. Due to the non-identifiability caused by the deterministic
feedback y2(t) = H(z)y1(t) the matrix H turns out to have a large
nullspace and the minimization does not lead to a unique esti-
mate. Most standard software can however compute a solution
via the Moore Penrose pseudoinverse. A constraint which should
be satisfied in order to get a consistent estimate of the transfer
function F (z) = z−1F+(z) is the stability of the estimated D(z)
polynomial. This condition can be imposed by implementing a
spectral factorization procedure by which the estimated parame-
ters Dk are substituted by a spectrally equivalent stable set via a
fast Cholesky spectral factorization algorithm due to Bauer (1955)
and Rissanen (1973).

The estimated D̂k (and D̂(z)) can then be used to filter the
prediction error to improve the output error estimate obtained
as ε̂(t) := D̂(z−1)v(t) and thereby implement an iteratively
refined parameter estimation algorithm by solving a sequence
of weighted least squares problems. We shall however leave the
analysis of this procedure to a future publication.

As a simpler alternative, assuming W2 minimum phase, one
may revert to the simpler model (25) which is unique and hence
identifiable and therefore a Prediction Error method should be
able to identify the transfer function directly from observed
data, (Ljung, 2002, p. 203). One may attempt a simple least
squares estimation method by using a rational (or matrix-
fraction) descriptions and transforming (25) to a constrained
output-error model with a white output error. It is well-known
that this model leads however to a predictor which is a nonlinear
function of the parameters of the denominator and the estimation
procedure needs to be carried on iteratively. Moreover the es-
timate is still constrained by the stability condition on F+(z). The
naive least squares method can be consistent only if F+(z) is a
FIR-type transfer function, that is the denominator of F+(z) is
a constant (see again Ljung, 2002, Sect. 7.3). As a first approx-
imation one may use models of this kind. With this proviso, in
spite of feedback, a suitably constrained PEM method may work
anyway (Ljung, 2002; Söderström & Stoica, 1989, p. 416).

6. Identification of a low rank model with an external input

Suppose we want to identify a multidimensional system with
an external input u(t), say

y(t) = F (z)u(t) + K (z)e(t) (35)

where e is a white noise process. The input u is assumed to be
completely uncorrelated with e (no feedback) and persistently
exciting of an appropriate order. When dim e = dim y and K (z)
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s square invertible, one could attack the problem by a standard
EMmethod. The method however runs into difficulties when the
oise is of smaller dimension than y since, exactly for the same
easons explained in Section 1, the predictor and the prediction
rror are not well-defined.
When the dimension of e is strictly smaller than the dimension

f y the model (35) is also called low-rank. This low-rank prob-
em is actually the one discussed in Van den Hof et al. (2017)
nd Weerts et al. (2018a, 2018b) where the authors propose
n approximate solution depending on a regularization param-
ter. In this section we shall propose a two-stage scheme to
ompute estimates of F and K which in principle does not use
pproximations.
Referring to the general feedback model for the joint process

e can always assume F causal and K (∞) full rank and normal-
zed in some way. Consider then the prediction error of y(t) given
the past history of u. We have

ỹ(t) := y(t) − E[y(t) | H−

t (u)] = K (z)e(t) (36)

since, by causality of F (z), the Wiener predictor is exactly F (z)u(t).
Hence ỹ is a low rank time series in the sense described in the
previous sections (now with the current K (z) playing the same
role of W (z)). In principle we could then use the procedure de-
scribed above for time series as we could preliminarily estimate
F (z) by solving a deterministic regression of y(t) on the past of
u and hence get ỹ(t). If we choose linear least square methods,
we will obtain a consistent estimation. Then a standard ARMA
identification can be applied to estimate the minimum phase K (z)
in terms of the pre-processed data ỹ(t).

Compared with the approach in Van den Hof et al. (2017)
and Weerts et al. (2018a, 2018b), we use a composition of basic
least squares and ARMA identification methods which avoids
the approximations, and the possible complex computations of
a regularized optimization problem with a tuning parameter.

7. Simulation examples

7.1. Example 1 [Both W1 and W2 minimum phase]

As a first simulation example consider a two-dimensional
process of rank 1 described by

y(t) =

[
W1(z)
W2(z)

]
e(t) (37)

where bothW1(z) andW2(z) are minimum phase rational trans-
fer functions and e is a scalar Gaussian white noise of zero mean
and variance λ2. By simulation we produce a sample of two-
dimensional output data of the system (37). With these data we
shall:

• Identify W1 and W2 by two separate AR models.
• Identify a transfer function model for y1 and estimate H(z)

according to the first procedure described in Section 3.2. And
then do the same for the other component.

• Estimate F+(z) and K+(z) in (25) using the estimated value
of W1(z) and H(z).

We choose W1 and W2 as in (22) and e a scalar zero mean
white noise of variance λ2

= 1. The process y(t) has rank 1.
The two transfer functions W1 and W2 are normalized at infinity
and minimum phase rational transfer functions. Note that in
this particular example both y1 and y2 are full rank so that our
procedure would work for both.

We have generated 100 samples of the two-dimensional time
series with N = 500 data points {yi(t); t = 1, . . . ,N, i = 1, 2}
and used Monte-Carlo simulations in MATLAB. The results are

condensed in Box plots. v

8

Fig. 2. Box plots of â1k for k = 1, 2, 3 in Example 1, where the true values are
11 = −0.2, a12 = −0.25, a13 = 0.05.

Fig. 3. Box plots of â2k for k = 1, 2, 3 in Example 1, where the true values are
21 = −0.6, a22 = 0.03, a23 = 0.01.

Assume the orders of W1 and W2 are known. Since the two
R models of y1 and y2 are of order 3, we just implement two AR
dentification in MATLAB for models of the form

i(t) = −

3∑
k=1

ai,kyi(t − k) + e(t), t = 1, . . . ,N,

he box plots of the estimated parameters in Ŵ1 and Ŵ2 are
hown in Figs. 2 and 3.1 In the two box plots, all median es-
imated values are close to the real ones, with the ranges of
stimation values acceptable and only one outlier for â12. We also
se the average of 100 runs of Monte-Carlo simulation to estimate
he asymptotic covariance of the estimated parameters which are
f the order of magnitudes 10−4, quite small compared with the
agnitude of parameters. The box plots in Figs. 2 and 3 show that
ur AR estimators work well.

1 In all box plots, the red horizontal line is the median of the data, the blue
ox contains half of the data points, the horizontal lines are at 25% and 75%
evel. The black tails (black horizontal lines) are at the minimum and maximum
alues, except for the outliers that are indicated by a red ‘+’ sign.
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Next we do least-squares estimation of the transfer function
H(z). Since H satisfies the identities

W2(z) = H(z)W1(z), W1(z) = H̄(z)W2(z),

e can use the following theoretical formula for H and H̄:

(z) =
1 + 0.5z−1

1 + 0.1z−1 , H̄(z) =
1 + 0.1z−1

1 + 0.5z−1 .

hich is equivalent to the difference equation

1 + 0.1z−1)y2(t) = (1 + 0.5z−1)y1(t).

This is just a theoretical model which we keep for comparison.
Assuming now that we do not know the true degrees of

the model polynomials in (31); then we first carry on an order
estimation to choose the appropriate q and r in the model

y2(t) − y1(t) = −

q∑
k=1

aky2(t − k) +

r∑
k=1

bjy1(t − j),

and then use least square to get estimates of the parameters of
the model

Ĥ(z) =
1 +

∑r
k=1 b̂kz

−k

1 +
∑q

k=1 âkz−k
.

rom a BIC table values we see that when (q, r) = (1, 1) the BIC
ndex reaches a minimum. So we do least squares estimation of
first order model

2(t) − y1(t) = −a1y2(t − 1) + b1y1(t − 1).

All the parameter estimates turn out to be equal to the true values
of the parameters a1 = 0.1, b1 = 0.5, affected by extremely
small errors. In Monte-Carlo simulations, the calculated estimated
variances are all smaller than 10−29. We do not show box plots
here. For estimating H̄(z), we obtain very similar results, which
are therefore not presented. Here both H and H̄ are stable func-
tions. We shall check if our algorithm also works when H is not
stable in the next example.

Next we shall use the previous estimates Ŵ1 and Ĥ to calcu-
late estimates of F+ and K+. We choose one estimate from the
previous Monte-Carlo simulations, namely

Ŵ1 =
1

1 − 0.1627z−1 − 0.2256z−2 + 0.0505z−3 ,

Ĥ =
1 + 0.5000z−1

1 + 0.1000z−1 .

rom Theorem 7, we know that there is one and only one pair
F+, K+) with F+ the one-step Wiener predictor filter. In our case
1, W2 are both normalized and minimum phase, and from (30)
e obtain the estimate of F+ described by

ˆ
+ = z(1 − Ŵ1

−1
)Ĥ−1

=
(0.1627 + 0.2256z−1

− 0.0505z−2)(1 + 0.1000z−1)
1 + 0.5000z−1

and K̂+ equal to the constant part of Ŵ1, i.e.,

K̂+ = Ŵ1(∞) = 1.

The parameters of these functions are very close to the true values
and hence appear to be consistent estimates of zF3, K3 in (23).

In fact, we get K̂+ = 1 each time in different simulations.
What’s more, since we are identifying with true orders in the
previous Monte-Carlo simulations, we obtain a F̂ with true orders
9

Fig. 4. Box plots of the parameters in F̂+ in Example 1.

as in (23), i.e.,

F+ = zF3 =
0.2 + 0.27z−1

− 0.025z−2
− 0.005z−3

1 + 0.5z−1

The box plot of the estimated parameters in F̂+, represented as

F̂+ =

∑3
k=0 b̂kz

−k

1 + â1z−1 .

are in Fig. 4, showing that the estimate F̂+ obtained from Ŵ1 and
the calculations in Section 5 is a good estimate of the true causal
Wiener filter F+.

.2. Example 2 [Both W1 and W2 not minimum phase]

In this subsection, a simple simulation example will be pre-
ented to show that our method can identify H well also when
t is unstable, can recover the minimum phase factor G1 when
1 is not minimum phase as discussed in Section 3.2, and can
stimate the Wiener Filter F+ when W2 is not minimum phase
s explained in the beginning of Section 5.1.
Consider a two-dimensional process y(t) described by (13),

here e is a zero mean white scalar noise of variance λ2
= 1,

and W has the two blocks with transfer functions

W1 =
z + 2
z − 0.2

, W2 =
z − 2
z − 0.2

.

t is easy to obtain an outer–inner factorization of W1 as in (17),
here

1 =
2z + 1
z − 0.2

=
2 + z−1

1 − 0.2z−1 , Q1 =
z + 2
2z + 1

.

From these we get the transfer function

H =
1 − 2z−1

1 + 2z−1 ,

which is not stable.
Here for simplicity, we do not use Monte-Carlo simulations

and order estimations. We just generate one group of data as in
Example 1, with e scalar zero mean and of variance 1. Assume the
orders of G1 and H are known.

Though G1 is not normalized at infinity, we may still imple-
ment an ARMA estimation in MATLAB and obtain an estimated
model
y1(t) − 0.1442y1(t − 1) = ê(t) + 0.5666ê(t − 1),
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Fig. 5. Bode diagrams of W1 and Ŵ1 in Example 2.

where the variance of the innovation ê is λ̂2
= 4.3127. Then

calculate the corresponding estimate of G1

Ĝ1 =
λ(1 + 0.5666z−1)
1 − 0.1442z−1 =

2.077z + 1.177
z − 0.1442

,

hich is minimum phase.
Next we estimate H by least squares on the model

1(t) + a1y1(t − 1) = y2(t) + b1y2(t − 1),

nd obtain the estimate

ˆ =
1 + b̂1z−1

1 + â1z−1 =
1 − 2.000z−1

1 + 2.000z−1 ,

hich is practically equal to the true H , with an estimation
rror variance of 1.0607 × 10−29. Incidentally, all of our simu-
ation results show that the least squares method works well in
dentifying unstable H ’s.

Since in this example G1 and W2 are scalar, we do not need
oprime factorization for obtaining Q1. In this case, Q ∗

1 is the
onjugate inner factor of H of formula (18), i.e., Q1 is the greatest
nner factor of H−1. From

ˆ −1
=

z + 2.000
z − 2.000

=
2.000z + 1
z − 2.000

·
z + 2.000
2.000z + 1

,

e have the estimate,

ˆ1 =
z + 2.000
2.000z + 1

.

Hence the estimate of W1 is

Ŵ1 = Ĝ1Q̂1 =
1.039z2 + 2.666z + 1.177
z2 + 0.3558z − 0.0721

,

hose magnitude Bode graph is compared with the true W1
n Fig. 5. The Bode diagrams show that we can obtain a con-
istent estimate of W1 even if it is not minimum phase. The
orresponding estimate of W2 can be calculated from

ˆ 2 = ĤŴ1 =
1.039z2 − 1.489z − 1.177
z2 + 0.3558z − 0.0721

,

hose Bode diagram is close to that of the true W2. We omit the
raphs due to space limitations. It is easy to check Ŵ = [Ŵ1 Ŵ2]

⊤

is minimum phase.
Next we perform an outer–inner factorization on Ŵ2, i.e., Ŵ2 =

Ĝ2Q̂2, and obtain

Ĝ2 =
2.077z2 + 0.1385z − 0.5885

z2 + 0.3558z − 0.0721
, Q̂2 =

z − 2.000
2.000z − 1

.

t last, the estimate of F+ can be calculated by (28)

ˆ
+ = [zŴ1Q̂ ∗

]+Ĝ−1
=

0.3915z(z + 0.6023)
,
2 2 z2 + 0.0667z − 0.2834

10
and the companion noise transfer function K (z) by implementing
the formula (26),

K̂ = Ŵ1 − z−1
[zŴ1Q̂ ∗

2 ]+Q̂2

=
1.039z3 + 1.7397z2 + 0.4125z − 0.0988

z3 − 0.1442z2 − 0.2500z + 0.0361
.

It can be checked that K̂ satisfies the equation Ŵ1 = (1 −

z−1F̂+Ĥ)−1K̂ . And we can see that when W2 is not minimum
phase, K is not a constant anymore as stated in Theorem 7.

.3. Example 3 [with external input]

In this subsection we consider the identification of a two-
imensional process of rank 1 subjected to an external input u.
e generate a scalar white noise u independent of e and identify
2-dimensional process model (35) as described in the previous
ection 6.
In this example the true system is described by

F (z) =z−1
[
0.3 + 0.7z−1

+ 0.3z−2

0.15 + 0.9z−1
− 0.5z−2

]
,

K (z) =:

[
K1(z)
K2(z)

]
=

[
1+0.1z−1

+0.4z−2

1+0.3z−1+0.4z−2

1+0.1z−1
+0.4z−2

1−0.2z−1+0.1z−2

]
.

(38)

here we have used the same F as in Van den Hof et al. (2017)
called G(q) there). Since the K2 of Van den Hof et al. (2017) is
ot normalized to 1, we use a different one. Both components of
ur K (z) here are normalized and minimum-phase so the overall
odel is an innovation model. By calculation the deterministic

elation from K1(z) to K2(z) is

(z) = K2(z)K1(z)−1
=

1 + 0.3z−1
+ 0.4z−2

1 − 0.2z−1 + 0.1z−2 .

For the model (38) we generate 100 groups of two-dimensional
time series of N = 500 data points {yi(t); t = 1, . . . ,N, i = 1, 2}.
The Monte-Carlo simulations are run with u and e independent
scalar white noises of variances 2 and 1. Of course here we also
measure the input time series u. Suppose we do not know the
orders of both Fi’s for i = i, 2.

First, let Fi(z) = z−1Ai(z−1)−1Bi(z−1) for i = 1.2, where the
polynomials are parameterized as

A1(z−1) = 1 +

q1∑
k=1

a1,kz−k, A2(z−1) = 1 +

q2∑
k=1

a2,kz−k.

B1(z−1) =

r1∑
k=0

b1,kz−k, B2(z−1) =

r2∑
k=0

b2,kz−k

corresponding to the dynamic relations

Ai(z−1)yi(t) = Bi(z−1)u(t − 1) + εi(t), t = 1, . . . ,N,

i = 1, 2 where we have added a small white noise error term. We
do a standard least squares regression on these models, written
in the form,

ŷi(t) = −

qi∑
k=1

ai,kyi(t − k) +

ri∑
k=0

bi,ku(t − 1 − k), (i = 1, 2). (39)

where the orders are to be estimated. Order estimation by min-
imum BIC leads to choose (q1, r1) = (1, 3) and (q2, r2) = (2, 4).
Although we do not get the right model structures, with these
orders we get the reasonable box plots shown in Figs. 6 and 7,
with very few outliers.

Next we compute the deviations (36) by

ỹ (t) = y (t) − F̂ u(t), i = 1, 2
i i i
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Fig. 6. Box plots of parameters of F̂1(z) in Example 3.

Fig. 7. Box plots of parameters in F̂2(z) in Example 3.

hich are components of a 2-dimensional low rank process.
ith these data we estimate K1(z) and K2(z) by the procedure

llustrated in Section 3. This time, to smooth the influence of the
rong model structure used in estimating F1 and F2, we assume
hat the true degrees of H and K1 are known.

We first use a least square method to estimate H based on the
ata ỹ1 and ỹ2, assuming true orders,

ˆ (z) =
b̂H,0 + b̂H,1z−1

+ b̂H,2z−2

1 + âH,1z−1 + âH,2z−2 .

hen let K1 = A−1
1 C1 so that

1(z−1)ỹ1(t) = C1(z−1)e(t),

where
A1(z−1) = 1 + a1,1z−1

+ a1,2z−2,

C1(z−1) = 1 + c1,1z−1
+ c1,2z−2.

he box plot of the Monte-Carlo simulations of the estimates
f H(z) are shown in Fig. 8. With the estimate of H(z) we can

calculate the estimate of K2 by

K̂2 = ĤK̂1.

Because of multiplication of estimates, K̂2 turns out to have a large
number of parameters. In order to save space, we do not show
 a

11
Fig. 8. Box plots of parameters in Ĥ(z) in Example 3.

Fig. 9. Magnitude Bode diagram of ¯̂K1(z) in Example 3.

Fig. 10. Magnitude Bode diagram of ¯̂K2(z) in Example 3.

heir box plots. Instead of drawing box plots, we have compared
he average of Monte-Carlo estimates with the true functions.
enote by ¯̂Ki (i = 1, 2) the Monte-Carlo averages of the estimates

ˆi, i = 1, 2; the Bode diagrams of the comparisons are shown in
igs. 9 and 10. Both average estimates have Bode diagrams quite
lose to those of the true ones. The results are nice even if we did
ot guess the true model structures when estimating F .

. Conclusions

In this paper we have shown that a rank-deficient process
dmits a special feedback representation with a deterministic
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eedback channel, which can be used to split the identification in
wo steps, one of which can be based on standard PEM algorithms
hile the other is based on a deterministic least squares fit.

dentifiability of these feedback structures is not guaranteed and
e show how to choose an identifiable representative. A conse-
uent method of identifying low rank processes with an external
nput is also proposed. It is shown that standard identification
lgorithms can be easily applied to identify the transfer functions
f low-rank models in diverse circumstances. Several simulations
onfirm the validity of the proposed approach.

ppendix A. Proof of the existence of models (4) with uncor-
elated noises

Consider a feedback model like (5) where the input noises
r, v) may be correlated and let

r̂(t) := E[r(t) | v(s); s ∈ Z]

e the acausal Winer estimate of r(t) given the whole history of
the process v (Lindquist & Picci, 2015, p. 105). Since the joint
spectral density is rational, there is a rational transfer function
say S(z) by which we can represent r̂ as r̂(t) = S(z)v(t) (with the
usual convention on the symbols). Hence

r(t) = S(z)v(t) + w(t)

where w(t) is a stationary process uncorrelated with the whole
history of v. Now, after substituting into the first equation, the
second equation of (4) can be written

y2(t) = [H(z) + S(z)]y1(t) − S(z)F (z)y2(t) + w(t)

from which

y2(t) = [I + S(z)F (z)]−1
[H(z) + S(z)]y1(t)

+ [I + S(z)F (z)]−1w(t) (A.1)

which, after setting r̃(t) := [I + S(z)F (z)]−1w(t) may be written
y2(t) = H̃(z)y1(t)+ r̃(t), of the same form of the second equation
in (4) but now with v and r̃ completely uncorrelated. □

Appendix B. On minimum phase matrix functions

Let W (z) be an (m + p) × m full column rank stable matrix
possibly a spectral factor of our (m+p)× (m+p) spectral density
matrix Φ(z) of rank m. Minimum phase functions are called
outer in the mathematical literature. Although our functions are
rational it will be convenient to refer to the general definitions in
Hardy spaces of the literature. For these we shall use the row-
vector convention of the book Lindquist and Picci (2015). The
following is an intuitive definition which matches that for scalar
functions (Lindquist & Picci, 2015, Theorem 4.6.11, p.137).

Definition 8. A rational matrix function W (z) is minimum-
phase, i.e., outer, if and only if it has all its poles in the open unit
disc and all its zeros in the closed unit disc.

One should refer to the definition of (right) zeros (Lindquist &
Picci, 2015, Definition 4.6.10,p.136) for full column rank matrix
functions with rows in H2

m. For example, α is a zero of a 2 × 1
matrix W = [W1,W2]

′, if and only if it is a common zero of both
W1 and W2. Equivalently there is a scalar inner function q(z), a
Blaschke product with a zero in α, such that W (z) = Ŵ (z)q(z)
with Ŵ (α) ̸= 0. More generally, we want to consider a partition
of W (z)

W (z) =

[
W1(z)

]
(B.1)
W2(z)

12
where W1(z), W2(z) are m × m, p × m analytic matrix functions
with rows in H2

m. Next we recall the classical definition of an outer
matrix function in the matrix Hardy space H2

(p+m),m. The matrix
function W (z) ∈ H2

(p+m),m is outer, if the row-span

span {φ(z)W (z) ; φ ∈ H∞

(p+m)}

is the whole space H2
m. This is equivalent to saying that in the

outer–inner factorization W (z) = Ŵ (z)Q (z), the inner (matrix)
function Q must be a unitary constant, which we may identify
with the identity Im.

Consider now the outer–inner factorizations

1(z) = Ŵ1(z)Q1(z), W2(z) = Ŵ2(z)Q2(z), (B.2)

where Ŵ1, Ŵ2 are the outer (minimum-phase) factors and Q1,Q2
re inner (in fact matrix Blaschke products). The question we
ant to answer is: if W is outer, does it follow that any (or both)
f the two components W1,W2 should also be outer? We shall
ee that the answer is in general negative.
Let us recall the definition of greatest common right inner divi-

or of two inner functions Q1 and Q2, see Fuhrmann (1981, p. 188
op) denoted Q1 ∧R Q2. This is the inner function representative
f the closed vector sum H2

mQ1 ∨ H2
mQ2.

heorem 9. Let a full column rank matrix function W (z) ∈ H2
(p+m),m

e partitioned as in (B.1). Then W is outer if and only Q1 and Q2 are
ight-coprime, equivalently, the greatest common right inner divisor
f Q1 and Q2 is the identity, i.e. Q1 ∧R Q2 = Im.

roof. Follows from the identity see Fuhrmann (1981, p. 188
op).
2
mQ1 ∨ H2

mQ2 = H2
m(Q1 ∧ Q2)

Hence W (z) ∈ H2
(p+m),m can be outer even if none of the two

ubmatrices W1 and W2 is. They just need to have no (unstable)
eros in common. On the other hand, when W1 or W2 have no
nstable zeros, they are automatically outer.

ppendix C. Stability of the Moore–Penrose Pseudo-Inverse

This section was contributed by Augusto Ferrante (Ferrante,
022). It deals with stability of a certain left inverse of a minimum
hase rational matrix function, which is needed in this paper.
owever, the result is more general.
Suppose we have a rational spectral factor W (z) with n rows

nd p ≤ n columns and assume the minimum phase condition
hat W (z) has full column rank for any |z| ≥ 1. This means that
he Smith–McMillan form (Kailath, 1980, p. 443–445) of W (z) has
he structure W (z) = U(z)G(z)V (z) where:

(1) U(z) is a n × n unimodular polynomial matrix so that its
nverse U−1(z) is polynomial.

(2) G(z) is a n × p rational matrix having the form G(z) =

D(z)
0

]
where D(z) is a p × p diagonal matrix whose diagonal el-

ements are non-zero rational functions having only zeros strictly
inside the unit circle.

(3) V (z) is a square unimodular polynomial matrix with p rows
and p columns so that its inverse V−1(z) is also polynomial. Thus
if W (z) is minimum phase the left inverse

W−L(z) := V−1(z) [D−1(z) | 0] U−1(z)

is clearly analytic. Since there is an algorithm to compute the
Smith–McMillan form, W−L(z) as defined above can be effectively

computed.
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